برامج الطاقات المتجددة في تونس
المنجز والتحديات
الناشر
مؤسسة فريدريش ناومان من أجل الحرية
قاعة عزير (الطابق الثاني والثالث) حي الصنوبر
شارع البابي قائد السبسي البحرية 2
1053 تونس

http://freiheit.org/tunisia
http://fnf.Tunis

بالتعاون مع
جماعة أتم

المؤلفون
وسام الهاني
بمساءلة السيدين خالد دراويل وعبد الحميد خلف الله

مراجعة ومتتبعة
شرف الدين اليعقوبي
حمدي حشاد

الاتصال
الهاتف: 21671966096
البريد الإلكتروني: tunis@freiheit.org

التاريخ
نوفمبر 2023

ملاحظات حول استخدام هذا المنشور
هذا المنشور هو منشور إعلامي لمؤسسة فريدريش ناومان من أجل الحرية. وهو متاح مجانًا وغير معدّ للبيع ولا يجوز استخدامه من قبل الأحزاب أو العاملين في الانتخابات لأغراض الإعلان الانتخابي أثناء الحملات الانتخابية (انتخابات الحكومة الفيدرالية أو حكومة الولاية أو الحكومة المحلية أو انتخابات البرلمان الأوروبي).

شكر وامتنان
تم إنجاز هذا العمل بالمساعدة القصوى للسيدين خالد دراويل وعبد الحميد خلف الله الاطارين بوزارة الصناعة والمناجم والطاقة، لذا نتوجه اليهما بأسمى عبارات الشكر والامتنان.

على المساهمة الكبيرة في اعداده.
الفهرس

Abstract

مقدمة

1. تطور سياسات وبرامج الانتقال الطاقي في تونس

1.1 مرحلة التأسيس:

1.1.1 برنامج تسخين المياه بالطاقة الشمسية بروسول

1.1.2 برنامج الأسطح الشمسية

1.2.1 مرحلة التخطيط الاستراتيجي والتطوير واسع النطاق:

1.3.1 مشاريع الشركة التونسية للكهرباء والغاز

1.2 الإجراءات المتبعة في مجال إنجاز مشاريع الطاقات المتجددة

2.1.1 مشاريع إنتاج الكهرباء من الطاقات المتجددة لغرض الاستهلاك الذاتي المرتبطة بشبكة الجهد العالي والمتوسط:

2.1.2 مشاريع إنتاج الكهرباء من الطاقات المتجددة في إطار نظام التراخيص:

2.1.3 مشاريع إنتاج الكهرباء من الطاقات المتجددة في إطار نظام الزوام:

3.1.1 أهم الإشكاليات المطروحة أمام تعزيز التحول نحو الطاقات المتجددة في تونس وسبل تجاوزها

3.1.2 عرض لمجمل الإشكاليات التي تعترض إنجاز مشاريع الطاقات المتجددة

3.1.3 الإجراءات القانونية

4.1.1 التمويل

5.1.1 التوافر الفني والربط بالشبكة

6.1.1 مقبولية مشاريع الطاقات المتجددة

7.1.1 تنظيم القطاع

20 توصية لإنجاح الانتقال الطاقي في تونس

خاتمة
Abstract

Tunisia is currently grappling with a significant energy deficit, which has recently surged to 54%, up from 10% in 2010. If no new discoveries are made, this deficit is projected to escalate to 80% by 2035. The prospect of boosting discoveries necessitates substantial investments in unconventional oil and gas, a controversial proposition due to its potential social and environmental repercussions. However, the adoption of clean energy could alleviate energy costs for both the national budget and households.

Renewable energy has been a cornerstone of government policies since the 1980s, but these initiatives have yet to effectively address the burgeoning energy deficit, which has been on an exponential rise since the 2000s. These ambitious programs failed to lay the groundwork for accelerating renewable energy projects and did not establish the necessary prerequisites for efficient energy plans and plants.

A proactive, multi-sectorial approach could pave the way for accelerating renewable energy projects. For example, land issues continue to hinder the progress of renewable energy projects. Establishing land reserves dedicated to clean energy projects could expedite investment settlement, necessitating the collaboration of various government departments, including the Ministry of Agriculture, Ministry of public properties and the Ministry of Defense.

Moreover, other facets of energy projects, such as the technical issues related to the electricity grid’s capacity and adaptability to new electricity production technologies must be addressed. Therefore, concerted efforts are needed to upgrade and adapt the network to accommodate renewable energy projects.

The pace of energy transition in Tunisia is not only hampered by land and grid issues but also by the legal and institutional framework. The lengthy process of rights allocation in the renewable sector significantly delays renewable energy projects, which typically require at least two years to start electricity production. Efforts should be made to streamline this bureaucratic and complex procedure. The establishment of an independent electricity regulatory body separate from the national electricity company, STEG, could advance renewable energy programs by providing clarity on price determination, thereby offering a guarantee of governance and transparency for investors. The government’s draft law concerning the regulatory body should be submitted to the parliament for approval as soon as possible. Furthermore, additional financial incentives could potentially attract more investments in the renewable energy sector.
مقدمة

اتسم قطاع الطاقة في تونس إلى حدود سنة 2000 بفائض في موازنة الطاقة الأولية، إذ كان قطاع النفط يمثل أهم موارد العملة الصعبة خلال السبعينات والثمانينات من القرن الماضي، مما ساهم في دفع عجلة التنمية للبلاد التونسية. غير أنه منذ سنة 2001 أصبحت موازنة الطاقة في حالة عجز ما فتئ يتفاقم من سنة إلى أخرى بسبب تراجع الموارد الوطنية من النفط والغاز، مقابل تواصل ارتفاع نسب استهلاك الطاقة بمختلف أشكالها رغم المجهودات المبذولة من قبل الدولة في مجالات البحث والتنقيب من جهة، والبحث على برامج التحكم في الطاقة من جهة أخرى لتقليل نسبة الاستهلاك.

بلغ عجز موازنة الطاقة مستويات قياسية خلال السنوات الأخيرة تجاوزاً عتبة 50% بينما لم يكن يتجاوز 10% قبل سنة 2010. كما تشير بعض الدراسات المتعلقة بتطور مخزون الطاقة التقليدية وتوقعات إنتاج النفط والغاز وكذلك نسق الاستهلاك خلال السنوات المقبلة إلى إمكانية بلوغ العجز أكثر من 80% في غضون سنة 2035 إذا لم يقع تحقيق اكتشافات جدوى ذات أهمية، ولم يتم اللجوء إلى مصادر بديلة على غرار الغاز الصخري والطاقة المتجددة، وتواصل نفس نسب الاستهلاك دون اعتماد إجراءات جديدة أكثر صرامة في مجال ترشيد استهلاك الطاقة. ويبين الرسم التالي اتساع الهوة بين الإنتاج الوطني والطلب على الطاقة منذ الثمانينيات إلى حدود سنة 2021:

 Petrôle Gaz national Gaz algérien Demande

المصدر: المرصد الوطني للطاقة والمناجم

أما بخصوص هيئة استهلاك الطاقة فقد ارتفعت حصة الغاز الطبيعي في موازنة الطاقة الأولية من 28% سنة 1990 إلى أكثر من 53% سنة 2022، وذلك نتيجة للاستراتيجيات المتعددة من التشريعات ونظم التشغيل، ونحو 90% استعمال الغاز الطبيعي في قطاعات السكن والصناعة والخدمات وإنتاج الكهرباء بعد اكتشاف أكبر حقل للغاز وهو حقل ميسكار. كما نلاحظ أيضاً أن مساهمة الطاقات المتجددة في مجمل استهلاك الطاقة الأولية لا تزال ضئيلة جداً إلى حد الآن ولا تكاد تتجاوز نسبة 3%.
من جهة أخرى، فإن تحليل هيكلة استهلاك الغاز على حدة تبين أن حوالي 75% من الاستهلاك يتركز في مجال إنتاج الكهرباء في حين يتوزع الباقى بين قطاعات السكن والصناعة والخدمات. ويسر الرسم التالي تركيبة المزيج الطاقى في تونس والذي لايزال يعتمد أساسا على الطاقات الأحفورية المتمثل أساسا في الغاز الطبيعي:

المزيج الطاقى في تونس إلى حدود موافى سنة 2022

المصدر: المرصد الوطنى للطاقة والمناجم

ومن خلال هذه الدارسة سيتم تقديم مختلف البرامج والإجراءات التي تم اعتمادها من أجل تسريع الانتقال الطاقى في تونس، وتحديد الأسباب التي حالت دون تحقيق الأهداف المنشودة والحلول، ثم ستطرق للحلول والتصويتات التي من شأنها التسرع من إنجاز سياسات الانتقال الطاقى في تونس.

1. تطور سياسات وبرامج الانتقال الطاقى في تونس

مرت سياسات وبرامج الانتقال الطاقى في تونس برحلتين أساسيتين. تتمثل المرحلة الأولى في التأسيس انطلقت منذ الثمانينات عبر وضع الانطلاق باللبنات الأولى عبر اعتماد إطار قانوني ومؤسساتي ومجموعة برامج قطاعية محدودة النطاق. إلا أن طبيعة البرامج شهدت تغييرا كبيرا منذ سنة 2013 عبر تبني برامج واستراتيجيات أكثر شمولية وأيضا طويلة الأمد.

1.1. مرحلة التأسيس:

انطلق التفكير في مسألة الانتقال الطاقى في تونس منذ بداية الثمانينات مع بداية التقلص الطبيبي لإنتاج المحروقات منذ سنة 1980 والذي تزامن مع ارتفاع الاستهلاك منذ هذا بداية عجز طاقى موقوف أبدا سنة 2000 إذا لم يتم التطور على اكتشافات هامة وتحديد الاحتياطي (ظهرت المشاكل حول عجز طاقى موقوف بداية من سنة 2000 حسب المعطيات المتوفرة). لذلك تم سنة 1985 (حداث الوكالة الوطنية للتحكم في الطاقة (ANME)) لتشجيع الاستثمار ودعم الموارد الطاقية ومن أهم الإنجازات يمكن ذكرها:

- 2004: إصدار قانون التحكم في الطاقة.

وقد تم تنفيذ عدة برامج قطاعية للتحكم في الطاقة تذكر من أهمها:
1.1. برنامج تسخين المياه بالطاقة الشمسية بروسول

يعتبر برنامج تسخين المياه بالطاقة الشمسية من أول التطبيقات التي تم اعتمادها في مجال الطاقة المتجددة في تونس. وقد انطلق البرنامج منذ سنة 1985 بتأسيس مؤسسة عمومية (شركة سيربت للطاقة المتجددة) لوضع تسهيلات لفائدة المستفيدين في شكل قروض تسترجع على مدى 7 سنوات عن طريق فاتورة الكهرباء. وتعتبر الانطلاقة الفعلية لهذا البرنامج منذ سنة 2005 عن طريق فاتورة الكهرباء. وتعتبر الانطلاقة الفعلية لهذا البرنامج منذ سنة 2005.

- مشروع بروسول 1: تم إنجازه خلال الفترة الممتدة من 2005 إلى 2007 حيث يتم إعداد منحة للسخان الشمسي بنسبة 20% من قيمة الاستثمار (بسقف 100 د/م²) ووضع خط تمول عن طريق أحد البنوك التجارية على أن تتكفل الشركة التونسية للكهرباء والغاز باستخلاص القروض عن طريق فاتورة الكهرباء على مدى 5 سنوات.

- مشروع بروسول 2: خلال الفترة 2008-2011: امتداداً للمشروع بروسول 1 مع بعض التعديلات على منظومة التمويل. وقد بلغ معدل المساحة المركبة سنويا إلى قرابة 75 ألف م² سنويا.

- مشروع بروسول 3: منذ سنة 2012 وتم تلك هذه المرحلة أيضا تواصلا لمشروع بروسول 2 مع بعض التعديلات الإضافية لترفع مدة سداد القروض من 5 إلى 7 سنوات.

2. برنامج الأسطح الشمسية

انطلق برنامج الأسطح الشمسية منذ منتصف سنة 2010 باعتماد نفس نموذج التمويل لمشروع تسخين المياه بالطاقة الشمسية في قطاع السكن. وقد وقع خلال سنة 2012 إبرام اتفاقية خاصة برامج المباني الشمسية بين الشركة التونسية للطاقة المتجددة والغاز، وتم التمويل من خلال منحة من الصندوق الوطني للتحكم في الطاقة عن طريق البنك التجاري بنك تستخلص عن طريق فاتورة الشركة التونسية للطاقة المتجددة، والغاز على مدى 7 سنوات عن طريق فاتورة الكهرباء.

وقد حقق هذا البرنامج نجاحا كبيرا من خلال إحداث أكثر من 600 شركة تركيب منها حوالي 300 شركة ناشطة وبلغ قدرة مركزة تجاوز 200 ميجاواط في أواخر سنة 2022.

1.1.2. مشروعات الشركة التونسية للكهرباء والغاز

منذ سنة 2000 انخرطت الشركة التونسية للكهرباء والغاز في مجال الطاقة المتجددة. وقد تم تحديد المناهج والمكتبة الإدارية لربط المساكن البعيدة بالشبكة كجزء من برنامج الشركة لتوفير الطاقة المتجددة.

- مشروعات الشركة التونسية للكهرباء والغاز:

 - 2009-2013: تركز محطة طاقة الرياح بسبيدي داود بالهوارية بقدرة 45 ميجاواط.
 - 2016-2020: تركز محطة طاقة الشمسية الفولتاوية بقدرة 20 ميجاواط بوزر.
مرحلة التخطيط الاستراتيجي والتطوير واسع النطاق:

في ظل انخفاض أسعار الطاقة الشمسية وطاقة الرياح وتفاقم عجز موازنة الطاقة الأولية بعد سنة 2010 وارتفاع أسعار النفط والغاز بالأسواق العالمية بالإضافة إلى تزايد مخاطر التزود بالطاقة الكهربائية بتحكيم التعوقي على مصدر واحد وهو الغاز، ما تأخر به البلاد التونسية من إماثة جافة من الطاقات المتجددة، قامت تونس منذ أوائل سنة 2013 بإجراء حوار وطني شامل بالاشتراك كافة الأطراف الفاعلة محليا ووجهيا وذلك بهدف وضع منوال طاقة جديد يتماشى مع جملة التحديات المطروحة على المستوى الوطني وال الخليج العربي التي طرأت على أسواق الطاقة العالمية. وقد أفضى هذا الحوار الوطني إلى بلورة "الاستراتيجية الوطنية للانتقال الطاقي" وترتكز هذه الاستراتيجية أساسا على المحاور التالية:

تنمية الموارد الوطنية من المحروقات
- تكثيف النشاط البحث والتطوير.
- استكشاف المكالم غير التقليدية من النفط والغاز.
- مراجعة إطار القانوني وتطوير الإطار التحفيزي.
- ضمان التزود بالغاز الطبيعي.

تطوير منظومة إنتاج وتخزين ونقل المواد النفطية
- ارتفاع من طاقة التكرير.
- تأهيل نقاط التزويد.
- تطوير طرق الخزين.
- تطوير النقل عبر الأنابيب.

تطوير نشاط توليد الكهرباء والربط الكهربائي
- تنوع المزيج الطاقي لإنتاج الكهرباء.
- تحسين الاستدلال النوعي لمعدات الإنتاج.
- إنجاز الربط الكهربائي مع أوروبا.
- تطوير الربط الكهربائي مع دول الشرق والمغرب العربي.

التحكم في الطاقة
- التهويض بالتجارة الطاقية.
- تنمية استعمال الطاقات المتجددة.
- تحسين الإطار التشريعي.
- تطوير الإطار التحفيزي.

وتتم على ضوء هذه الاستراتيجية تحقيق المخطط الشمسي التونسي الذي يهدف إلى إنجام الطاقات المتجددة في المزيج الكهربائي بنسبة 35% في غضون سنة 2030 وتحفيض الاستهلاك بنسبة 30% في نفس الأفق. وتمثل مسألة تعزيز مساهمة الطاقات المتجددة في إنتاج الكهرباء والحدود الكوبوني من أهداف الاستراتيجية المذكورة خاصة وأن تونس قد انخرطت في التوجهات العالمية المتعلقة بالمتغيرات المناخية منذ سنة 2016 لاسيما أنها تتفق على ضرورة التزام بمساحات ضيقة من انبعاثات ثاني أكسيد الكربون بـ 45% في أفق 2035.

وفي سبيل تنفيذ هذه الاستراتيجية قامت الوزارة المكلفة بالطاقة بإجراءات صندوق الانتقال الطاقي في سنة 2014 وإعداد ونشر القانون عدد 12 سنة 2015 المورخ في 11 مايو 2015 يتعلق بإنتاج الكهرباء من الطاقات المتجددة.
وقد نص القانون عدد 12 لسنة 2015 على أربعة (4) أنظمة لإنتاج الكهرباء من الطاقات المتجددة:

1. نظام الإنتاج الذاتي للجهد المنخفض: تركيبات على الأسطح في القطاع السكني.

2. نظام الإنتاج الذاتي في الجهد العالي والمتوسط: الصناعة، الخدمات، الفلاحية.

3. نظام التراخيص: البيع الكلي للشركة التونسية للكهرباء والغاز بغادرات أقل من 10 ميغاوات للطاقة الفولتاضوئية واقل من 30 ميغاوات لطاقة الرياح.

4. نظام اللزمات: المشاريع الكبرى المعدة للبيع الكلي للشركة التونسية للكهرباء والغاز والتصدير.

كما قامت الوزارة بإعداد النصوص التطبيقية المتمثلة في الأمر عدد 1123 لسنة 2016 المؤرخ في 24 أكتوبر 2016 والتعلق بضبط شروط وإجراءات إنجاز المشاريع للجهد المنخفض وبيع الكهرباء من الطاقات المتجددة، والقرارات الصادرة في 09 فبراير 2017 والمتعلقة بالتصادم على كراسات شروط الربط بالشبكة وعقود شراء الطاقة الكهربائية المنتجة.

إثر استكمال الإطار التشريعي، قامت الوزارة في مستهل سنة 2017 بنشر برنامج إنتاج الكهرباء من الطاقات المتجددة 2017-2020 والذي تم تجربته لاحقاً في سنة 2018 لرفع القدرة المخصصة لنظام اللزمات من 200 ميغاواط إلى 1000 ميغاواط ويضمن هذا البرنامج المشاريع التالية:

البرامج المحتملة 2018	البرامج المستقلة (2017)	صيغة إنتاج المشاريع	برنامج 2017-2020 مجموع
الطاقة الشمسية	الطاقة الشمسية	طاقة الرياح	طاقة الرياح
الفولتاضوئية	الفولتاضوئية	100	100
500	500	130	120
140	80		
300	80	300	350
1070	790	650	350
المجموع العام			

الإجراءات المتبعة في مجال إنجاز مشاريع الطاقات المتجددة

يمكن الإطار القانوني في تونس المستثمرين من إنتاج الكهرباء من الطاقات المتجددة عبر ثلاث أنظمة مختلفة كما يلي:

2.1. المشاريع يتم إنتاج الكهرباء من الطاقات المتجددة لغرض الاستهلاك الذاتي المرتبطة بشبكة الجهد العالي والمتوسط:

المتوسط: الإطار القانوني:

ينجز هذا الصفح من المشاريع طبقاً لمقتضيات الفصل 9 من القانون عدد 12 لسنة 2015 المؤرخ في 11 مايو 2015 والمتعلق بإنتاج الكهرباء من الطاقات المتجددة، والقسم الثاني من البند الأول من الأمر الحكومي عدد 1123 لسنة 2016 المؤرخ في
يتضمن هذا القرار تحديد شروط وإجراءات إنجاز مشاريع إنتاج الكهرباء من الطاقات المتجددة، وقواعد نقل الكهرباء، وographer القوائم الصادرين بمقتضى القرار الصادر في 09 فبراير 2017. ويقوم بإعداد هذه المشاريع حرفاء الجهد العالي والمتوسط للشركة التونسية للكهرباء وغاز وفقًا للمبادئ التالية:

- يتمتع بحق نقل الكهرباء المنتجة إلى مواقع الاستهلاك مقابل سعر للنقل حدد بمقتضى مقرر الوزير المكلف بالطاقة المؤرخ في 02 جوان 2014 (7 مليمات/كيلواط).
- يتمتع بحق بيع الفوائض عند كل عملية فوترة كما كانت كمية الفوائض.
- عند آخر كل سنة يجب أن تتجاوز مجموع كمية الفوائض التي تم بيعها خلال السنة 30% من كمية الطاقة المنتجة عند تجاوز هذا الحد تقع عملية تسوية في بداية السنة الموالية.
- تحتسب الفوائض في إطار موازنة شهرية لكل مركز توقيت على حدة بالنسبة لنظام الأربعة مراكز أوقات، وما عدى ذلك يتم إحتساب الفوائض بصفة حينية من خلال الاعتماد على التسجيلات الخاصة بمنحنيات الحمل والإنتاج.

تتم الموافقة على هذه المشاريع من قبل الوزير المكلف بالطاقة بناء على رأي اللجنة الفنية للإنتاج الخاص للكهرباء المحدثة بمقتضى الفصل 29 من القانون عدد 12 لسنة 2015 وذلك على ضوء ملف يودع بالوزارة المكلفة بالطاقة.

وتتمثل إجراءات إنجاز مشاريع إنتاج الكهرباء من الطاقات المتجددة لغرض الاستهلاك الذاتي والمرتبطة بشبكة الجهدين العالي والمتوسط في المراحل التالية:
فصل 9 من الأمر عدد 1123 لسنة 2016

منح الموافقة

لا

نعم

الانتقلا في تركيز المحطة

تحيين و إتمام دراسات الربط

إنجاز معدات الربط

أنجاز المحطة

الهيئة المختصة

إعداد المطلب

دراسة المطلب (اللجنة الفنية)

أو

إصلاح الإخلالات

إذاعةطلبات المراقبة والتشغيل

لا

 مساء

إضفاء موضوع معينة

نعم

إبرام العقد و تشغيل المحطة

15 يوم عمل
الإنجازات

تبعاً إلى هذه الإجراءات، تمّ إلى موافقة سنة 2022 تركيز أكثر من 300 ترخيص بقدرة جملية في حدود 70 ميغاواط منها حوالي 30 ميغاواط تم ربطها بالشبكة.

2.2 مشاريع إنتاج الكهرباء من الطاقات المتجددة في إطار نظام التراخيص:

الإطار القانوني:

ينجز هذا الصنف من المشاريع من قبل المستثمرين الخواص وفقاً لمبدأ «Take or Pay»، وفي إطار المنافسة طبقاً لمقتضيات الفصل 12 من القانون عدد 12 لسنة 2015 المؤرخ في 11 مايو 2015 والمتعلق بإنتاج الكهرباء من الطاقات المتجددة، والباب الثاني من الأمر الحكومي عدد 123 لسنة 2016 المؤرخ في 24 أكتوبر 2016 والمتعلق بضوابط شروط وإجراءات إنجاز مشاريع إنتاج وبيع الكهرباء من الطاقات المتجددة، وكرас شروط الربط بالشبكة وعقد بيع الكهرباء المنتجة (PPA).

ويتم إنجاز هذه المشاريع وفقاً للمبادئ التالية:

- تُفتح هذه المشاريع في إطار مبدأ المنافسة بعد نشر دعوة لتقديم مشاريع من قبل الوزير المكلف بالطاقة (تتشر على موقع الويب للوزارة ووسائل الإعلام المتاحة).
- يجب أن تكون القدرة الفردية للمشروع الواحد الحدود المضبوطة بالفصل 14 من الأمر عدد 1123 للسنة 2016 (10 ميغاواط للمطاولات الشمسية والوقود البترولي و30 ميغاواط لطاقة الرياح).
- يتم قبول العروض تباعاً حسب أفضلية وفقاً للتعرفة المقترحة حتى بلوغ القدرة الجملية المحددة في الدعوة لتقديم المشاريع.
- تتم إجراءات إنجاز مشاريع إنتاج الكهرباء من الطاقات المتجددة في إطار نظام التراخيص في المراحل التالية:
missible: 20 يوم عمل

4 أشهر

تجميع واعتماد إعدادات مشروع

إذا كان

١٨ شهرًا

нем

إدراج موافقة الميدانية

لا

١٥ يوم عمل

١٢ شهرًا

إدراج تعديلات مشروع

٣ أشهر

٢٠ يوم عمل

إبلاغ المحقق

لا

٣ أشهر

١٨ شهرًا

فصل ٣٠ من الأمر

عدد ١١٢٣

إعداد الترخيص

لا

٣ أشهر

١٨ شهرًا

إبلاغ الهيئة المختصة

لا

لا
الإنجازات:

- الدعوة الأولى لتقديم مشاريع (ماي 2017): تم إطلاقها في ماي 2017 لإنجاز 70 ميغاوات من الطاقة الشمسية الفولطاضوئية و140 ميغاوات من طاقة الرياح. بعد تقييم المطالب التي تلقاها الوزارة، تم منح 6 موفقات مبدئية لمشاريع طاقة شمسية فولطاضوئية من فئة 10 ميغاوات بمتوسط تعرفة 212 مليسا/كتيلوواط ساعة، و4 مشاريع طاقة رياح من فئة 10 ميغاوات بمتوسط تعرفة 212 مليسا/كتيلوواط ساعة. وقد بلغ أفضل سعر تم الحصول عليه حوالي 4.7 مليسا/كتيلوواط ساعة مع تأجيل مشاريع طاقة الرياح للدعوة الثانية بعد مراجعة العقد النموذجي لشراء الكهرباء من أجل تحسين مقبوليتها البنوكية.

- الدعوة الثانية لتقديم مشاريع (ماي 2018): تم إطلاقها في ماي 2018 لإنجاز 70 ميغاوات من الطاقة الشمسية الفولطاضوئية و130 ميغاوات من طاقة الرياح. بعد تقييم المطالب، تم منح 6 موفقات مبدئية لمشاريع طاقة شمسية فولطاضوئية من فئة 10 ميغاوات بمتوسط تعرفة 212 مليسا/كتيلوواط ساعة، و4 مشاريع طاقة رياح من فئة 30 ميغاوات بمتوسط تعرفة 4.3 مليسا/كتيلوواط ساعة.

- الدعوة الثالثة لتقديم مشاريع (يونيو 2019): تم إطلاقها في يونيو 2019 لإنجاز 70 ميغاوات من الطاقة الشمسية الفولطاضوئية. بعد تقييم المطالب، تم منح 6 موفقات مبدئية لمشاريع طاقة شمسية فولطاضوئية من فئة 10 ميغاوات بمتوسط تعرفة 4.5 مليسا/كتيلوواط ساعة، و10 مشاريع طاقة شمسية فولطاضوئية من فئة 1 ميغاوات بمتوسط تعرفة 211 مليسا/كتيلوواط ساعة، و4 مشاريع طاقة رياح من فئة 30 ميغاوات بمتوسط تعرفة 4.5 مليسا/كتيلوواط ساعة.

- الدعوة الرابعة لتقديم مشاريع (ديسمبر 2020): تم إطلاقها في ديسمبر 2020 لإنجاز 70 ميغاوات من الطاقة الشمسية. بعد تقييم المطالب، تم منح 4 موفقات مبدئية لمشاريع طاقة شمسية فولطاضوئية من فئة 10 ميغاوات بمتوسط تعرفة 212 مليسا/كتيلوواط ساعة، و3 مشاريع طاقة شمسية فولطاضوئية من فئة 1 ميغاوات بمتوسط تعرفة 182 مليسا/كتيلوواط ساعة.

3.2 مشاريع إنتاج الكهرباء من الطاقات المتجددة في إطار نظام اللزمات:

الإطار القانوني:

ويتم إنجاز هذه المشاريع وفقا للمبادئ التالية:

- يتم تحديد المواقع من قبل الدولة.
- ينتج هذه المشاريع في إطار مبدأ المناقة. بعد نشر طلب عروض من قبل الوزير المكلف بالطاقة (تنشر على موقع الوزارة ووسائل الإعلام المتاحة).
- يجب أن تفوق القدرة المركزة الحدود المضبوطة بالفصل 14 من الأمر عدد 1231 لسنة 2016 (10 ميغاوات للطاقة الشمسية الفولطاضوئية و30 ميغاوات لطاقة الرياح)..

- يتم إجراء طلب عروض على مرحلتين: (1) طلب عروض انتقاء أولي بناء على القدرة الفنية والمالية للعارضين (2) طلب عروض مضيق للعروض المالية.
- خلال طلب العروض الذي أصدرته الوزارة في موافق سنة 2022 تم إعطاء الامكانية للخواص لتحديد مواقع الإنتاج، كما تم التخلص عن مرحلة الانتقاء الأولي.

وتتمثل إجراءات إنجاز مشاريع إنتاج الكهرباء من الطاقات المتجددة في إطار نظام اللزمات كما يلي:
إعداد المطلب (عرض فني)

فتح العروض (لجنة فتح العروض)
فرز العروض (لجنة الفنية)
إحالة تقرير الفرز إلى اللجنة العليا

قبول المطلب
لا
نعم

إعلان صاحب المطلب كتابياً

إعداد المطلب (عرض مالي)

فتح العروض (لجنة فتح العروض)
فرز العروض (لجنة الفنية)
إحالة تقرير الفرز إلى اللجنة العليا

قبول المطلب
لا
نعم

إعلام صاحب المطلب كتابياً

إبرام عقد اللزمة وعقد شراء الكهرباء

 الهيئة المختصة

الإطلاق في تركيز المحطة

إنجاز معدات الربط

أنجاز المحطة

تجارب المراقبة والتشغيل

إصلاح الإخلالات
لا
نعم

التشغيل التجاري للمحطة
آليات التمويل:

يتم تمويل هذه المشاريع من طرف القطاع الخاص في شكل قروض من بنوك تجارية (من دون ضمان الدولة).

الحوافز:

تعتبر مشاريع إنتاج الكهرباء من الطاقات المتجددة المعدة للبيع الكلي للشركة التونسية للكهرباء والغاز بعض الحوافز في إطار القانون عدد 71 سنة 2016 المؤرخ في 30 سبتمبر 2016 والمتعلق بقانون الاستثمار، والأمر عدد 389 سنة 2017 المؤرخ في 9 مارس 2017 والمتعلق بالحوافز المالية لفائدة الاستثمارات المنجزة في إطار قانون الاستثمار.

وتتمثل هذه الحوافز في:

- منحة الترفيع في القيمة المضافة والقدرة التنافسية بقيمة 15% من كلفة الاستثمار بسقف 1 مليون دينار.
- منحة التنمية الجهوية: 15% من كلفة الاستثمار بسقف 1.5 مليون دينار بالنسبة للمجموعة الأولى من مناطق التنمية الجهوية المضبوطة بالملحق عدد 2، و30% من كلفة الاستثمار بسقف 3 مليون دينار بالنسبة للمجموعة الثانية.
- منحة تطوير القدرة التشغيلية:

تتكفل الدولة بمساهمة الأعراش في النظام القانون للضمان الاجتماعي بنوان الأجور المدفوعة للأعوان من ذوي الجنسية التونسية المنتدبين لأول مرة وذلك لمدة 3 سنوات بالنسبة للقطاعات ذات الأولوية وعشر سنوات بالنسبة للمجموعة الثانية.

تتكفل الدولة لمدة سنة بنسبة من الأجور المدفوعة للاعوان من ذوي الجنسية التونسية المنتدبين لأول مرة وذلك بنسبة 50% من الأجور المدفوعة بسقف 250 دينار شهريا إذا كانت نسبة التأطير بين 10 و15%.

تتكفل الدولة لمدة ثلاث سنوات بنسبة من الأجور المدفوعة للأعوان من ذوي الجنسية التونسية المنتدبين لأول مرة وذلك بنسبة 50% من الأجور المدفوعة بسقف 250 دينار شهريا إذا كانت نسبة التأطير تفوق 15%.

كما تتمتع المعدات المستوردة من الخارج التي ليس لها مثيل محليا على غرار المموجات (Inverters) والمادة الأولية وال-materials المستعملة في تصنيع تجهيزات الطاقة الشمسية بإعفاءات جبائية.

ما تم تحقيق إلى مواف 2022:

في إطار نظام اللزمات، تم تطبيق عروض انتقاء أولي في ماي 2018 لإنجاز ما يلي:

<table>
<thead>
<tr>
<th>الأجل</th>
<th>المشاريع</th>
<th>التكنولوجيا</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 جويلية 2018</td>
<td>50 ميغاوات بلوزر.</td>
<td>500 ميغاوات من الطاقة الشمسية</td>
</tr>
<tr>
<td></td>
<td>50 ميغاوات بسيدي بوز.</td>
<td>(مواقع تحددها الدولة)</td>
</tr>
<tr>
<td></td>
<td>100 ميغاوات بالفيروان</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 ميغاوات بقصة</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 ميغاوات بتطاوير.</td>
<td></td>
</tr>
<tr>
<td>19 جويلية 2018</td>
<td>200 ميغاوات بنابل.</td>
<td>300 ميغاوات من طاقة الرياح</td>
</tr>
<tr>
<td></td>
<td>100 ميغاوات بعياني.</td>
<td>(مواقع تحددها الدولة)</td>
</tr>
<tr>
<td>25 أكتوبر 2018</td>
<td>مشروع مقترحة من قبل المستثمرين (100 ميغاوات)</td>
<td>200 ميغاوات من طاقة الرياح</td>
</tr>
<tr>
<td></td>
<td>كحد أقصي لكل مشروع.</td>
<td>(مواقع خاصة)</td>
</tr>
</tbody>
</table>
في 19 جويلية 2018، تلقت الوزارة 58 عرضًا منها 38 للطاقة الفولطاضوئية و20 للطاقة الرياح. وقد تم تقييم العروض في 23 نوفمبر 2018، وفي هذا السياق تم اختيار 16 مرشحًا للطاقة الفولطاضوئية و12 مرشحًا لطاقة الرياح للمشاركة في طلب العروض المضيق الذي تم فتحه في مارس 2019.

إثر انقضاء الأجل النهائي لتقديم العروض في 19 جويلية 2019 بالنسبة لـ 500 ميغاواط طاقة شمسية فولطاضوئية، تلقت الوزارة 8 عروض مالية بأسعار منخفضة للغاية، كان أفضلها حوالي 72 مليارًا/ميجاواط/ساعة، أي ما يعادل 2.4 سنت-دولار/ميجاواط/ساعة.

<table>
<thead>
<tr>
<th>المعرفة (دينار/ميجاواط/ساعة)</th>
<th>القدرة (ميجاواط)</th>
<th>الصاحب العرض</th>
<th>المشاريع</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.379</td>
<td>50</td>
<td>SCATEC SOLAR</td>
<td>تووزر</td>
</tr>
<tr>
<td>79.379</td>
<td>50</td>
<td>SCATEC SOLAR</td>
<td>بوزيد سيدي</td>
</tr>
<tr>
<td>97.920</td>
<td>100</td>
<td>TBEA/AMEA</td>
<td>الفقروان</td>
</tr>
<tr>
<td>79.950</td>
<td>100</td>
<td>ENGIE/NAREVA</td>
<td>قطينة</td>
</tr>
<tr>
<td>71.783</td>
<td>200</td>
<td>SCATEC SOLAR</td>
<td>تطاوين</td>
</tr>
</tbody>
</table>

بالنسبة لمشاريع طاقة الرياح بقدرة 300 ميغاواط، تم تقديم طلب العروض حتى نهاية سنة 2023 من أجل استكمال الدراسات الضرورية وحل مشكلة سرعة الرياح.

وخلال مجموع سنة 2022، أصدرت الوزارة طلب عروض لإنجاز 1700 ميغاواط خلال الفترة 2022-2025 على النحو التالي:
- 800 ميغاواط من الطاقة الشمسية الفولطاضوئية على مواقع خاصة بواقع مشروعين ذات قدرة أحادية 100 ميغاواط لكل سنة.
- 600 ميغاواط من طاقة الرياح على مواقع خاصة بواقع مشروعين ذات قدرة أحادية 75 ميغاواط لكل سنة.
- 300 ميغاواط على موقعين مقترحين من الدولة (الهشة قابس والخبنة سيدي بوزيد).

3. أهم الإشكاليات المطروحة أمام تعزيز التحول نحو الطاقات المتجددة في تونس وسبل تجاوزها

رغم الجهود الكبيرة التي بذلتها الوزارة المكلفة بالطاقة وهياكلها، إلا أن النتائج لم تكن وفق المأمول، ويعود ذلك إلى العديد من الإشكاليات المتعلقة بالمسائل العملية والفنية والقانونية والواقعية. ونتطرق خلال هذه الفقرة إلى الإشكاليات بالتفصيل والحلول التي تم وضعها من قبل الوزارة والتوصيات بالنسبة للإشكاليات العلاقة.

3.1 عرض لمجمل الإشكاليات التي تعترض انجاز مشاريع الطاقات المتجددة

يعترض تنفيذ المشاريع المتعددة النتائج الإشكاليات المطروحة على الطاقات المتجددة:

1.1.3 الإشكاليات العقارية

توفر مشاريع إنتاج الكهرباء من الطاقات المتجددة صعوبات في الحصول على تراخيص في استخدام الأراضي المصنفة "مناطق صيانة" من قبل وزارة الفلاحة والموارد المائية والصيد البحري، ولذلك قامت السلط العمومية بالعمل على تحليل هذه الصعوبات من خلال اجتماعاتها التي تم تفعيلها بالمرسوم عدد 68 لسنة 2022 الذي تم اتخاذها في 19 أكتوبر 2022، والمشروطة بمستويات حادة خاصة بتحسين نجاعة المشاريع العمومية باللعبة، حيث تم استفاء الإشراف المصنفة "مناطق صيانة" من التحذير بوجوب قانون حماية الأراضي الفلاحية حيث يتم دراسة المطالب حالة حسب طبيعة المواقع والترخيص في استغلالها. ولهذا السبب فشل عدد جدوي استغلالها في الأراضي الفلاحية.
كما حذف مبدأ تغيير صبغة الأرض للكافة مشاريع الطاقات المتجددة.
فضلا عن ذلك، تم تمكن المستثمرين من حق عيني خاص على البناء والمنشآت والتجهيزات اللازمة لتنفيذ المشاريع على الأراضي الدولية بموجب الفصول 22 و31 من المرسوم المشار إليه سلفا.

على أهمية هذه الإجراءات والضمانات القانونية التي تم تقديمها للمستثمرين، إلا أن آثارها تبقى نسبية وهو ما يتطلب التفكير في طرق مختلفة وعملية من أجل التحري في نسق إنجاز مشاريع الطاقات المتجددة، خاصة فيما يتعلق بالعمل الاستباقي حيث يتطلب التراخيص مع إعداد البنية التحتية للربط والدراسات وذلك قبل انطلاق طلب العروض لتسهيل عمل المستثمرين عبر تركيز جهوده فقط على الجوانب المالية والتقنية. وقد يساهم ذلك في تسريع الاتجاه الإيجابي في إنجاز المشاريع بإحراز الحصول على السندات الإدارية اللازمة من قبل الإدارة.

وتجدر الإشارة في هذا الصدد أن وزارة الدفاع الوطني تلعب دوراً كبيراً في هذا المجال، خاصة فيما يتعلق بمشاريع طاقة الرياح حيث تمتلك الوزارة معايير صارمة في خصوص هذا الصنف من المشاريع، وهو ما يتطلب التنسيق المسبق. ويقترح إعداد خريطة ومناطق الاستبعاد العسكرية بالتنسيق مع وزارة الدفاع الوطني مع العمل على إيجاد حلول دون الأمر في المناطق الاستبعاد بكل أصنافها.

2.1.3 مردودية المشاريع المتعلقة بالطاقة المتجددة

تعد مسألة مردودية مشاريع الطاقات المتجددة أحد أهم الإشكاليات التي تعرّض الانتقال الطاقي في تونس. حيث يواجه القطاع إشكالات في تحديد تعريفة الكهرباء المتجددة لمختلف مصادر الطاقة المتجددة وخاصة صعوبة تحديد أسعار شراء الكهرباء بالنسبة لتشريعت invasion الأسعار العالمية للتجهيزات حسب الأسواق وحجم المشاريع إضافة إلى عدم وجود أسعار شراء مرجعية تأخذ في الاعتبار الواقع المحلي. على الرغم من اختلاف الأسعار الذي تم تسجيله على المستوى العالمي، إلا أن الأسعار لا تزال تقسم بعد الاستقرار وهو ما يؤثر على مسألة ضبط التعريفة.

Tendance 2010-2021:
- PV : - 90%
- CSP : - 80%
- Eolien onshore : - 50%
- Eolien offshore : - 50%
3.1.3 الإجراءات القانونية

تعدّ مدة إنجاز الإجراءات المتعلقة بمشاريع الطاقات المتجددة طويلة بحيث تستغرق ما يقل عن ثلاث سنوات للانطلاق في الإنتاج، وهو ما يؤثر على نسب الإنجاز الوطني للانطلاق الطاقي في تونس.

وقد ضمت هذه الإجراءات في إطار الأمر عدد 1123 سنة 2016 المؤرخ في 24/02/2016 المتعلق بشروط وإجراءات إنجاز مشاريع تأهيل وريفي الكهرباء من طاقة المتجددة وذلك لضمان من الحضور، ولأن تطبيق السريعة من إنجاز هذه المشاريع أعادة النظر في هذه الإجراءات التي تسمى بـ "الملحق الثاني" في سبيل التقليل منها. وتقترح في هذا السياق تشكيل فريق عمل يضم مختلف الأطراف المعنية لتقييم هذه الإجراءات مع تشكيل القطاع الخاص في أعمالها لتحديد سبل التقليل من أجلى مواجهة الملفات والإ🧩 وانطلاق في إنجاز المشاريع في أحسن الظروف.

وتعمّل الوزارة حاليا على إعداد منظومة إلكترونية مندمجة حتى يتم من خلالها رقمنة كل الإجراءات.

4.1.3 التمويل

تتطلب المشاريع المتعلقة بالطاقة المتجددة استثمارات ضخمة بحوالي 3 مليون دينار للملحق الواحد، في إطار تمويل مشروع (Project Finance) أي أن العضو الأول للبنك يتزكّى على قدّيّ بيع الكهرباء للمشترى الوحيد والحصري وهو الشركة التونسية للكهرباء والغاز. وقد طلبت العديد من المستثمرين رعية نتيجة تقليل عمليات التمويل وتقليل ذلك قامته الوزارة بإعداد رعية نتيجة تقليل عمليات تقليل محترم وثبات تغيير توزيع المخاطر وذلك لاحترام مبادئ التنافس والشفافية وتكافؤ الفرص. وقد تم إصدار رعية نتيجة تقليل في أوت 2022.

لذلك، يتعين التفكير في إجراءات تسهل ولوج المستثمرين إلى التمويل خاصة وأن الموضوع بذكاء أو حكمة أساسية بالنسبة للاقتصاد الوطني.

5.1.3 الجوانب الفنية والربط بالشبكة

تعتبر مشكلة قصر شبكة نقل الكهرباء أحد أهم التحديات التي تواجه دورة التسريع في نسق إنجاز مشاريع الطاقات المتجددة وهو ما يتطلب العمل على تحديدها تسهيل قدرة استيعاب الشبكة للمشاريع، وتشكل مشاكل الشبكات الذكية من أبرز التقلبات الجديدة التي تستهدف على حوكمة استثمار الكهرباء، وناثر بالفترة الفارقة أقرت بعض الدول على الوصول إلى التمويل، و الحل هذا الإشكال توجه الوزارة إلى إصلاح مهندسي المحافظة قريقهم عن خلال ضبط

الخطة من قبل الوزارة ووضع معايير صارمة لقبول المشاريع التي تعلم من المشاركة في أنواع التدريبي، حياة الحالة، ضمان بنكي...) بالإضافة إلى مراجعة العقدتمويلي حتى يصبح أكثر تقليدية حالي البنوك الممولة.

6.1.3 مقبولية مشاريع الطاقات المتجددة

تمثل مسألة قدرية نقل الكهرباء أحد أهم العراقيل التي تواجه دون التسريع في نسق إنجاز مشاريع الطاقات المتجددة وهو ما يتطلب العمل على تحديدها تسهيل قدرة استيعاب الشبكة للمشاريع، وتشكل مشاكل الشبكات الذكية من أبرز التقلبات الجديدة التي تستهدف على حوكمة استثمار الكهرباء، وناثر بالفترة الفارقة أقرت بعض الدول على الوصول إلى التمويل، و الحل هذا الإشكال توجه الوزارة إلى إصلاح مهندسي المحافظة قريقهم عن خلال ضبط

المطلوبة من قبل الوزارة ووضع معايير صارمة لقبول المشاريع التي تعلم من المشاركة في أنواع التدريبي، حياة الحالة، ضمان بنكي...) بالإضافة إلى مراجعة العقدتمويلي حتى يصبح أكثر تقليدية حالي البنوك الممولة.

7.1.3 تنظيم القطاع

يعتبر إحداث هيئة تعديلية للكهرباء من أوكد مطالب المستثمرين لتوضيح المسائل المتعلقة بالأسعار ووضع حدّ لمثل هذه المواقف الداخلية للأدواء، حيث تضطلع الشركة التونسية للكهرباء دور هام في هذا المجال وهو ما يتطلب مع قواعد الحوكمة الفنية والضوابط المحددة للحالة المعمل بها في هذا المجال. وتجدر الإشارة إلى أنه تم إعداد مشروع قانون لإحداث هيئة تعديلية وتم عرضه على الاستشارة العمومية وهو حاليا جاهز للنشر.
20 توصية لإنجاح الانتقال الطاقي في تونس

لمزيد التسريع في نسق إنجاز مشاريع الطاقات المتجددة وسياسات الانتقال الطاقي عموما، نقترح 20 توصية من شأنها مساعدته صانعي القرار على الوصول للأهداف المشروعة:

1. ضرورة حوكمة منظومة الدعم واقتراح بدلات أخرى لتسير" مسار الانتقال الطاقي في تونس".

2. تعزيز قدرات مختلف المتدخلين في مجال تطوير هذا القطاع وتكثيف الدورات التكوينية لما يكتسبه الموضوع من خصوصية وتشعب لتيسير "مسار الانتقال الطاقي في تونس".

3. دعم شبكة الكهرباء لإسعاب الكهرباء المنتجة من الطاقات المتجددة من خلال تطور هذه الشبكة في المناطق ذات الإمكانيات الكبيرة من مصادر الطاقة المتجددة وتقوية الربط الكهربائي مع الدول المجاورة وإقامة خط ربط بين أوروبا إضافة إلى تنفيذ مشاريع كهرومانية للسخ والتوصل مما ينسق عبر طاقة الكهربائية في فترات فائض الإنتاج وإعادة إنتاجها في فترات خروج الطلب على الكهرباء.

4. وضع آلية تحفيزية وتمويلية جديدة ملائمة لسوق التسخين الشمسي الجماعي من خلال تنويع وتفعيل تدخلات صندوق الانتقال الطاقي هذا بالإضافة إلى تمكين وحدات القطاع السياحي من خطوط تمويلية خاصة عبر البنوك التونسية وعن طريق المانحين.

5. تخفيف الإجراءات الإدارية الخاصة بتنفيذ الاستثمارات في ميدان الطاقات المتجددة وبالحصول على التشجيعات.

6. ضرورة حوكمة الإجراءات الدولية والجمالية وتقليص أجال التراخيص لتركيز نظام طاقة فوطوضوينة متصل بشبكة الجهد المتوسط وتفعيل الإجراءات على مستوى المؤسسات المتدخلة.

7. ضرورة استكمال كافة الأطر التشريعية والمؤسساوية لتشجيع الاستثمار في إنغذاء الكهرباء بواسطة الطاقات المتجددة من قبل القطاع الخاص (الهيئة التشريعة المستقلة لقطاع الكهرباء، مجلة الطاقات المتجددة ...).

8. القيام بعدد من الإصلاحات المؤسساتية والتنظيمية لضمان مراقبة مخططات تنفيذ المشاريع ومتابعة نتائجها وحل الإشكالات وتعويضات التي يمكن أن تواجهها.

9. استكمال المخطط الوطني للطاقة الكهربائية المنتجة من الطاقات المتجددة المنصوص عليه بالقانون عدد 12 لسنة 2015 يتعلق بإنجذب الكهرباء من الطاقات المتجددة.

10. وضع آلية تحفيزية وتمويلية جديدة ملائمة لدفع استغلال الطاقات المتجددة من خلال تنويع وتفعيل تدخلات صندوق الانتقال الطاقي ووضع خطوط تمويلية خاصة عبر البنوك التونسية.
<table>
<thead>
<tr>
<th>تعليق الخطاب</th>
<th>النص المكتوب باللغة العربية</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>تمديد العمل بالمنظومة التمويلية الحالية عبر الشركة التونسية للكهرباء والغاز والتي أثبتت جدواها في نشر استغلال الطاقات المتجددة في القطاع السكني وحوكمتها (برامج بروسول).</td>
</tr>
<tr>
<td>12</td>
<td>تنمية القدرات الوطنية في كل المجالات ذات العلاقة بتطوير الطاقات المتجددة (أقطاب تكنولوجية - مراكز تكوين - مخابز مراقبة الجودة - بحث علمي ...)</td>
</tr>
<tr>
<td>13</td>
<td>تقييم الموارد المتاحة وتحيينها في إطار أطلس لمختلف مصادر الطاقة المتجددة على الصعيد الوطني.</td>
</tr>
<tr>
<td>14</td>
<td>وضع برنامج خاص يشبه استغلال الطاقات المتجددة في التطبيق غير المستغل بالقدر الكافي على الصعيد الوطني كشف المياه والتكيف والهيدروجين الأخضر.</td>
</tr>
<tr>
<td>15</td>
<td>البحث عن آليات تمويلية مبتكرة لتطوير متباطرات سوق الطاقات المتجددة وتحقيق أهداف المخطط الشمسي التونسي.</td>
</tr>
<tr>
<td>16</td>
<td>ضرورة إيجاد آلية إيجاد بين مختلف المؤسسات والبرامج الوطنية والقطاعية بإيجاد إمكانية خاصة لقطاع النقل والتكيف في حلول إيجابية تمكنين البنية الأساسية والنقل عاليا والتي لابد أن تكون أحد أعمدة سياسات النجاعة الطاقية، السيارات الكهربائية، استعمال الكهرباء في وسائل النقل العمومي ... وتتدر الإشارة إلى أهمية إعداد استراتيجية طويلة الأمد تتم أساسا قطاع النقل مع تحديد أهداف نصف مرحلة منها الإصلاحات التي تعتبر إنجازها في هذا التحوار.</td>
</tr>
<tr>
<td>17</td>
<td>تفعيل دور المجلس الوطني للطاقة كهيئة تنسيقية لضمان حسن الإنجاز الاستراتيجية الوطنية للانتقال الطاقي وتغيير التكتيبية ومجال التشخيص وطرق العمل بما يضمن نجاعة أنشطته.</td>
</tr>
<tr>
<td>18</td>
<td>تفعيل دور السلطات الجهوية والمحلية فيما يخص تصور وإنجاز برامج الانتقال الطاقي والتعاون مع المستثمرين في هذا المجال.</td>
</tr>
<tr>
<td>19</td>
<td>الحرص على أن تكون سياسات الانتقال الطاقي عادلة من حيث استفادة المجتمعات المحلية منها، إذ لابد أن تراعي البرامج المعتمدة الحاجيات المحلية وإعطاء الأولوية للأنشطة المتعلقة بتطوير الطبق المحلي على الجوانب التصديرية. وتتدر الإشارة إلى أن الدولة التونسية بصدد الدخول في شراكات هامة جدا مع النواحي المالية مع منائين جنوب في المسائل المتعلقة بإنتاج الطاقات المتجددة، وتذكر على سبيل المثال برامج الهيدروجين الأخضر. لذا يتعين الحرص على أن تكون العقود المبرمة في هذا التحوار في صالح الاقتصاد الوطني خاصة عند تنامي العجز الطاقي والطلب الوطني على الكهرباء.</td>
</tr>
<tr>
<td>20</td>
<td>العمل على أن تراعي برامج الانتقال الطاقي الجوانب البيئية خاصة مع وجود خطر مهارة متصورة بإتجاز هذا الصنف من المشاريع. (استغلال أراضي فلاحة أوروبية، استعمال المياه لعمل الزهور القوطوفلسطينية ...)</td>
</tr>
</tbody>
</table>
خاتمة

ختاما، يمكن القول أن سياسات الانتقال الطاقية عرفت تطورا كبيرا منذ الثمانينات إلى الوقت الحالي، حيث تحوّلت من برامج تركز أساسا على النجاعة الطاقية وتدخلات قطاعية بحثة دون رؤية شاملة، لتشتغل فيما بعد إلى سياسات شاملة ودقيقة تغطي كامل سلسلة القرارات المرتبطة بالانتقال الطاقية وكامل المتدخلين في هذا المجال. وتبعا لذلك، أصبحت تونس تتمتع بمعايير الدولية المعتمدة في هذا الميدان، وتذكر على سبيل المثال أن تقييم تونس حسب مؤشر الانتقال الطاقية الذي يطلقه سنويا المنتدى الاقتصادي العالمي بلغ 51 نقطة من 100 نقطة ممكنة وكان ترتيبها 89 من 120 دولة معنية بالتقييم.

على الرغم من التقدم الحاصل على المستوى التنظيمي، الا أن الإنجاز على المستوى الواقعي ظل محدودا لوجود إشكاليات تطبيقية تتطلب تغيير طريقة العمل على المستوى الإداري بشيمل الإجراءات وتبسيطها وتذليل الصعوبات التي تواجهها المستثمرون خاصة وأن القطاع يستقطب استثمارات أجنبية هامة. لذا، يعد العمل الاستباقي والشراكي الحل الأفضل للتسريع من نسق إنجاز الاستراتيجية الوطنية للطاقة علاوة على ضرورة توفير الإمكانيات الضرورية سواء كانت منها البشرية أو المادية لتمكين الهياكل العمومية المتداخلة في المجال من الاضطلاع بالمهام الموكولة لها وتوفر أطر للتعاون والشراكة بين المجتمع المدني وقية المتدخلين تضمن قبولا أوسع لمشاريع الطاقات المتجددة وتعاونا أكثر فاعليّة لتحقيق الأهداف المطموحة.